ENGINEERING INFORMATION

HELICAL GEARS

HELICAL GEAR FORMULAS

To Obtain	Having	Formula
Transverse	Number of Teeth (N) & Pitch Diameter (D)	$P = \frac{N}{D}$
Diametral Pitch (P)	Normal Diametral Pitch (P _n) Helix Angle (ψ)	$P = P_N Cos \psi$
Pitch Diameter (D) Number of Teeth (N) & Transverse Diametral Pitch (P)		$D = \frac{N}{P}$
Normal Diametral Pitch (P _N)	Transverse Diametral Pitch (P) & Helix Angle (ψ)	$P_N = \frac{P}{Cos\psi}$
Normal Circular Tooth Thickness (τ)	Normal Diametral Pitch (P_N)	$\tau = \frac{1.5708}{P_N}$
Transverse Circular Pitch (p _t)	Diametral Pitch (P) (Transverse)	$p_t = \frac{\pi}{P}$
Normal Circular Pitch (p _n)	Transverse Circular Pitch (p)	$p_n = p_t Cos \psi$
Lead (L)	Pitch Diameter and Pitch Helix Angle	$L = \frac{\pi D}{Tan\psi}$

TRANSVERSE VS. NORMAL DIAMETRAL PITCH FOR BOSTON 45° HELICAL GEARS

P	P _∾
Transverse	Normal
Diametral Pitch	Diametral Pitch
24	33.94
20	28.28
16	22.63
12	16.97
10	14.14
8	11.31
6	8.48

HELICAL GEAR LEWIS FORMULA

The beam strength of Helical Gears operating on *parallel shafts* can be calculated with the Lewis Formula revised to compensate for the difference between Spur and Helical Gears, with modified Tooth Form Factors Y.

$$W = \frac{SFY}{P_N} \left(\frac{600}{600 + V} \right)$$

- W=Tooth Load, Lbs. (along the Pitch Line)
- S = Safe Material Stress (static) Lbs. per Sq. In. (Table III)
- F = Face Width, Inches
- Y =Tooth Form Factor (Table IV)
- P_N= Normal Diametral Pitch
 - (Refer to Conversion Chart)
- D = Pitch Diameter
- V = Pitch Line Velocity, Ft. Per Min. = .262 x D x RPM

TABLE III-VALUES OF SAFE STATIC STRESS (S)

Materi	al (s) L	b. per Sq. In.
Bronze	9	10000
Cast Iron		12000
	.20 Carbon (Untreated)	20000
	.20 Carbon (Case-hardened)	25000
Steel	.40 Carbon (Untreated)	25000
	.40 Carbon (Heat-treated)	30000
	.40 C. Alloy (Heat-treated)	40000

TABLE IV—VALUES OF TOOTH FORM FACTOR (Y)

FOR 14-1/2°PA—45° HELIX ANGLE GEAR				
No. of Teeth	Factor Y	No. of Teeth	Factor Y	
8	.295	25	.361	
9	.305	30	.364	
10	.314	32	.365	
12	.327	36	.367	
15	.339	40	.370	
16	.342	48	.372	
18	.345	50	.373	
20	.352	60	.374	
24	.358	72	.377	

HORSEPOWER AND TORQUE

Max. allowable torque (T) that should be imposed on a gear will be the safe tooth load (W) multiplied by $\frac{D}{2}$ or T = $\frac{W \times D}{2}$ The safe horsepower capacity of the gear (at a given RPM) can be calculated from HP = $\frac{T \times RPM}{63,025}$ or directly from (W) and (V);

$$HP = \frac{WV}{33,000}$$

For a known HP, $T = \frac{63025 \times HP}{RPM}$

	injection molding services DN GEAR ®	
Viewmold provide	plastic extrusion services lalog	sales@viewmold.com
	sheet metal manufacturing	